Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism
نویسندگان
چکیده
منابع مشابه
Sucrose non-fermenting related kinase enzyme is essential for cardiac metabolism
In this study, we have identified a novel member of the AMPK family, namely Sucrose non-fermenting related kinase (Snrk), that is responsible for maintaining cardiac metabolism in mammals. SNRK is expressed in the heart, and brain, and in cell types such as endothelial cells, smooth muscle cells and cardiomyocytes (CMs). Snrk knockout (KO) mice display enlarged hearts, and die at postnatal day ...
متن کاملSucrose Nonfermenting-Related Kinase Enzyme-Mediated Rho-Associated Kinase Signaling is Responsible for Cardiac Function.
BACKGROUND Cardiac metabolism is critical for the functioning of the heart, and disturbance in this homeostasis is likely to influence cardiac disorders or cardiomyopathy. Our laboratory has previously shown that SNRK (sucrose nonfermenting related kinase) enzyme, which belongs to the AMPK (adenosine monophosphate-activated kinase) family, was essential for cardiac metabolism in mammals. Snrk g...
متن کاملIdentification of Sucrose Non-Fermenting–Related Kinase (SNRK) as a Suppressor of Adipocyte Inflammation
In this study, the role of sucrose non-fermenting-related kinase (SNRK) in white adipocyte biology was investigated. SNRK is abundantly expressed in adipose tissue, and the expression level is decreased in obese mice. SNRK expression is repressed by inflammatory signals but increased by insulin sensitizer in cultured adipocytes. In vivo, adipose tissue SNRK expression can be decreased by lipid ...
متن کاملRegulation of Sucrose non-Fermenting Related Kinase 1 genes in Arabidopsis thaliana
The Sucrose non-Fermenting Related Kinase 1 (SnRK1) proteins have been linked to regulation of energy and stress signaling in eukaryotes. In plants, there is a small SnRK1 gene family. While the SnRK1.1 gene has been well studied, the role other SnRK1 isoforms play in energy or stress signaling is less well understood. We used promoter:GUS analysis and found SnRK1.1 is broadly expressed, while ...
متن کاملIdentification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK.
Subtraction hybridization after the exposure of keratinocytes to ultraviolet radiation identified a differentially expressed cDNA that encodes a protein of 630 amino acid residues possessing significant similarity to the catalytic domain of the sucrose-non-fermenting protein kinase (SNF1)/AMP-activated protein kinase (AMPK) family of serine/threonine protein kinases. Northern blotting and rever...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biology Open
سال: 2014
ISSN: 2046-6390
DOI: 10.1242/bio.20149811